Translating basic behavioral science into clinical interventions for childhood obesity

Leonard H. Epstein, Ph.D.
Distinguished Professor of Pediatrics and Social and Preventive Medicine
University at Buffalo School of Medicine and Biomedical Sciences
Translational Research

- Bench to bedside
- Bridge gap between basic and clinical sciences
- Move knowledge and methods across levels of analysis
Why is translational research a challenge for behavioral sciences

- In drug development, the industry employs scientists to review new developments in basic science that can lead to new drugs.

- Behavioral science does not have an industry developing products.
 - It is up to clinical investigators to read basic science to keep up with new discoveries, or
 - Basic scientists need to learn clinical methods to apply their knowledge, or
 - Basic and clinical scientists need to work together in multidisciplinary teams.
Normal science or paradigm shifts

- Translational research can move across levels of analysis in normal science or paradigm shifts
 - Normal science represents systematic replication across levels of analysis
 - Paradigm shifting science represents a new paradigmatic approach to a problem

- Creativity is needed for both normal and paradigm shifting approaches to translation research
 - Examples from incubator and GPS research
Topics to be addressed

- Brief review of 2 examples from my research on translational research
 - Basic science of choice led to research on increasing physical activity
 - Basic science of behavioral genetics led to studying gene concordance in family-based behavioral treatment of pediatric obesity

- Discuss barriers to translational research
Experimental Design: Alcohol Dependence

- Rats randomized to control, intermittent free choice (once per week), continuous free choice, or forced intake of ethanol
- Became dependent on ethanol over 32 weeks of drug administration
- Animals kept ethanol-abstinent for 3 months, during which time they showed withdrawal (change in pain threshold, hyperthermia, inactivity)
- Animals then provided self-administration test

Experimental Design: Opiate Dependence

- Rats randomized to control, choice or forced intake of etonitazene
- Became dependent on opiate over 30 weeks of drug administration
- Animals kept opiate-abstinent for 19 weeks, during which time they showed withdrawal (change in pain threshold)
- Animals then provided self-administration test

It could be worse for your heart than cholesterol.
Effects of decreasing sedentary behavior versus increasing activity on weight change in obese children

- Obese 8-12 year-old children from 61 families randomized to groups that targeted:
 - Increased physical activity
 - Decreased sedentary behavior
 - Combined increased physical activity, decreased sedentary behavior

- Provided 4 month intensive treatment, followed at 12 month post randomization
Pediatric Weight Control

- Family-based weight control is an evidence based treatment for pediatric obesity
 - Over 30 years of research on Family-Based Treatment (FBT)
 » Including the parent as an active participant in treatment improve long-term (10 year) outcome for the child
 » Lifestyle intervention is associated with superior long-term outcome than programmed aerobic exercise
Long-term effects of treating the parent + child

Long-term effects of lifestyle exercise, aerobic exercise and calisthenics

Parent-child weight loss in family-based weight control

- One of the most reliable changes in family-based weight control is the strong relationship between parent and child weight loss.

- Having a successful parent is a strong predictor of child success.
 - Observed in our very first FBT study and replicated many times since.
 - Usual correlation between parent and child weight loss between $r = 0.40$ to 0.60.
Mechanisms for similarity in parent/child weight loss

- Behavioral mechanisms include:
 - Modeling, as parents who lose weight are models for child behavior change, and children and parent both report modeling is a factor related to weight loss
 - Shared family environment that influences both parent and child in the same way

- Behavioral genetic mechanisms include
 - Common genetic predisposition to respond to environmental changes in the same way
 - Must be mediated by common behavioral phenotypes
Reinforcing value of food

- 1000’s of studies have used food as a reinforcer to understand basic mechanisms of learning and the neurobiology of reinforcement.

- Subjects who find food more reinforcing consume more food in ad lib eating situations (Epstein et al, 2004).

- Food is more reinforcing for obese vs. non-obese subjects (Saelens and Epstein, 1996, Temple et al, 2008).

- Food reinforcement phenotype reliable (test-retest r > .80).

- Reinforcing value sensitizes over time for obese subjects (Temple et al, 2009, Clark et al, 2010).

- Food reinforcement predicts weight gain
 - Lean children who find food more reinforcing gain more weight than lean children who do not find food as reinforcing (Wardle et al, 2009).

- The reinforcing value of food is a shared behavioral phenotype (Epstein et al, 2008).
Dopamine

- Dopamine modulates the reward value of food, drink, sexual behavior, social reinforcers, and drugs of abuse (Berridge & Robinson 1998; Martel 1996).
- Dopamine genetics influence the release, reuptake, and receptor binding determine brain dopamine activity.
- Reduced dopamine binding to D2 receptors may be associated with addictive behaviors, increased eating, and obesity (Wang, Volkow et al 2001; Epstein et al 2002).
Research Question

- Is it possible that the similarity in parent-child weight loss is due to common genes that predispose the parent and child to respond to a standard treatment in the same way?
 - Particularly the D2 gene that is related to food reinforcement, that is a shared behavioral phenotype.
Does concordance of parent/child genes relate to similarity of weight loss?

- 26 families with obese parents and obese 8-12 year-old children who participated in standard FBT were studied.
- Families were coded as to whether the parent and child had the same number of DRD2 A1 alleles (0, 1 or 2).
- Regression models were run with gene concordance as a predictor of the relationship between parent and child zBMI change.
Does concordance of parent/child genes relate to similarity of weight loss?

- The correlations between child and parent zBMI changes at 6 and 12 months were 0.69 and 0.77.

- Relationship between parent and child zBMI changes:
 - If concordant, parent/child relationships of 0.78 and 0.89 ($\beta = 0.93$ and 1.01, p’s < 0.001)
 - If discordant, parent/child relationships of 0.59 and 0.24 ($\beta = 0.28$ and 0.22, p’s > 0.05)

- If parents were at least moderately successful in weight loss and the parent and child were concordant for the Taq1 A1 allele
 - Children showed 2X ZBMI change at six months (-.352 vs -.175) and >4X change at twelve months (-.466 vs -.109).
Does concordance of parent/child genes relate to similarity of weight loss?

Change at 6 Months

Change at 12 Months

Graphs showing concordance and discordance of Taq1 A1 alleles:
- **Discordant for Taq1 A1 alleles**
- **Concordant for Taq1 A1 alleles**

Axes:
- **X-axis:** Parent 0-6 zBMI Change
- **Y-axis:** Child zBMI Change

The graphs illustrate the relationship between parent and child BMI changes and the concordance of Taq1 A1 alleles at 6 and 12 months.
Variables important in my bridging gap between basic and clinical research

- I am very interested in basic science and read a lot of basic science
 - While I read clinical research, my ideas for new interventions often come from basic science
 » Need to become selective reader 😊

- I conduct both basic research and clinical research
 - I have learned enough basic science or have colleagues who provide the basic science expertise

- I have had success in adapting basic science ideas and paradigms into clinical research
Challenges in translational research I

- Graduate school training is very insular and laboratory specific for many people
 - Students are not often encouraged to work with many people in a multidisciplinary or interdisciplinary environment

- Biases may exist across levels of analysis that push people away from working at higher levels of analysis
 - Bottom up science favors lower levels of analysis
 - There is a certain “snottiness” for the more basic the better
 - These schisms can run very deep, which has led to departmental separations and evolution of behavioral neuroscience outside of psychology departments
Challenges in translational research II

- Lack of interest/expertise in basic science and/or lack of basic science colleagues

- Difficulties in getting basic and clinical scientists to work together
 - Examples of creativity (Pixar, Apple) work because they are not linear production models, but engage all members of the team in the act of creativity and problem solving
 - Translational science often uses a more linear model in which a scientist at a higher level of analysis is using a paradigm or method developed by a more basic scientist, but they are not working together
EARTH MOON TRANSIT
DISTANCE VS DIMENSIONAL RELATIVITY

[Graph showing Earth and Moon transit with a curve indicating distance change]
Challenges in translational research III

- It may be hard to reinforce people for working together
 - Who gets credit?
 - How are promotion and tenure decisions are made?
 - Do departments and schools value multidisciplinary collaboration?

- Universities usually don’t provide resources for extended multidisciplinary collaborations that stimulate translational science
 - Meeting times
 - Are seed monies available to develop collaborations?
 - Example of Pixar suggests trust needs to be developed, and the team needs to work together for extended periods to maximize creativity and productivity
Acknowledgements

- Jim Roemmich, Ph.D.
- Brian Saelens, Ph.D.
- Jenn Temple, Ph.D.
- Kelly Dearing, M.P.H.
- Rocco Paluch, M.S.
- John Leddy, M.D.
- Robbert Salis, M.D.
- Richard Erbe, M.D.
- Myles Faith, Ph.D.